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ABSTRACT

The Runtime Verification ECU (RV-ECU) is a new de-
velopment platform for checking and enforcing the
safety of automotive bus communications and soft-
ware systems. RV-ECU uses runtime verification, a
formal analysis subfield geared at validating and ver-
ifying systems as they run, to ensure that all manu-
facturer and third-party safety specifications are com-
plied with during the operation of the vehicle. By
compiling formal safety properties into code using a
certifying compiler, the RV-ECU executes only prov-
ably correct code that checks for safety violations as
the system runs. RV-ECU can also recover from vi-
olations of these properties, either by itself in sim-
ple cases or together with safe message-sending li-
braries implementable on third-party control units on
the bus. RV-ECU can be updated with new specifica-
tions after a vehicle is released, enhancing the safety
of vehicles that have already been sold and deployed.

Currently a prototype, RV-ECU is meant to eventu-
ally be deployed as global and local ECU safety mon-
itors, ultimately responsible for the safety of the entire
vehicle system. We describe its overall architecture
and implementation, and demonstrate monitoring of
safety specifications on the CAN bus. We use past
automotive recalls as case studies to demonstrate
the potential of updating the RV-ECU as a cost effec-
tive and practical alternative to software recalls, while
requiring the development of rigorous, formal safety
specifications easily sharable across manufacturers,
OEMs, regulatory agencies and even car owners.

INTRODUCTION

Modern automobiles are highly computerized, with 70
to 100 complex and interconnected electronic control
units responsible for the operation of automotive sys-
tems, and roughly 35 to 40 percent of the develop-
ment cost of modern automobiles going towards soft-
ware. In the next 10 years this number is expected to
jump to between 50 and 80 percent, and even higher
for hybrid vehicles. This will only be more true with
the advent of autonomous vehicles [1, 2].

It is not surprising, then, that the automotive industry
suffers from nearly every possible software fault and
resulting error. Many related stories have recently
been featured on the news, including cases where
cars are hacked and remotely controlled, including
brakes and the engine, completely ignoring driver in-
put. In some cases prior physical access to the car
was needed, in others the car was not even touched.
Massive automobile recalls in the past few years have
been due to software bugs, costing billions [3, 4, 5, 6,
7, 8, 9]. Moreover, almost 80 percent of car innova-
tions currently come from computer software, which
has therefore become the major contributor of value
in cars [1]. As software becomes more and more in-
tegral to the function and economics of vehicles, the
safety and security of car software has taken center
stage.

LIMITATIONS OF CURRENT APPROACHES Tra-
ditional software development quality processes rely
on static analysis tools and techniques to improve the
quality, security and reliability of their code. Static
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analysis tools analyze software code against a set
of known rules and heuristics and notify the opera-
tor of warnings and violations. Nearly all companies
developing a reasonably large code base use code
quality tools. The reader interested in how static anal-
ysis tools perform on automotive-related software is
referred to [10]. Even with all of the resources spent
on these tools, software is still full of bugs and reliabil-
ity weaknesses. This may be fine when the software
is running on something as simple as a cell phone,
or a laptop computer that your child uses for home-
work, but this is unacceptable at best, and dangerous
at worst, when the software runs in an automobile.

Model checking [11] is a complementary approach
that has found some use in the automotive industry.
While rigorous and thorough, this approach suffers
from serious drawbacks that make its use impractical.
Besides the infamous ”state explosion” problem, the
most significant drawback of model checking is the is-
sue of model faithfulness. Models being used must
be correct with regards to the system being inspected
and the environment it operates in. With the com-
plexity of modern software and hardware systems,
and the (often) specific nature of the models involved,
great care must be taking in validating the model itself
as well as the system with regards to the model. This
is an extremely error prone and time intensive pro-
cess. A previous comparison of model checking to
static analysis by a team investigating model check-
ing tools found that issues in the model itself caused
model checking to miss five errors caught by static
analysis, concluding that “the main source of false
negatives is not incomplete models, but the need to
create a model at all. This cost must be paid for each
new checked system and, given finite resources, it
can preclude checking new code.” [12]. Besides the
model, the tool itself must also be trusted to properly
verify the properties over the model, requiring either a
highly-audited open source tool or another source of
high confidence in the tool itself.

The portability of these models and specifications is
also dubious: any changes in the underlying system
require a correct change in the model, a non-trivial
process that must be repeated often for complex sys-
tems [11]. Equivalent specifications can thus have dif-
ferent meanings based on the models being used.

While this does not matter if the model is spe-
cific to some standard, such as a programming lan-
guage [13], with many tools and applications of model
checking this is not the case [14, 15]. So, while ex-
pressive, models can be complex and non-portable.
Overall, while model checking has the potential for
detecting deep and subtle errors, the requirement for
a model introduces many restrictions and complexi-

ties that make the tools difficult to manage and in-
tegrate effectively into most engineering teams, re-
stricting their use to teams with high levels of formal
expertise and critical applications requiring the maxi-
mum possible assurance, thus preventing widespread
adoption by the automotive industry as a whole.

ENABLING SAFETY STANDARDIZATION Another
hurdle on the path to greater automotive safety is
the lack of standardized automotive safety specifica-
tions. Because many specifications are informally
expressed and never formalized, communication be-
tween Tier 1 suppliers and their OEM partners is of-
ten incomplete with regards to safety, producing com-
ponents that may behave unpredictably in the sys-
tem as a whole. Moreover, formalizations that exist
tend to be difficult or impossible to port between Tier
1 suppliers. One clear industry need stemming from
verification-based development methodologies is the
need for portable formal safety specifications. Specifi-
cations should be expressed in lightweight formalisms
that are easy to understand and communicate, and
should stay separate from the particular verification
approach that is employed for their checking.

Lastly, we observe that in currently developed auto-
motive systems, both the safety and the functional-
ity of the system and its components are considered
and implemented together, as part of the same de-
velopment process. Because safety and function-
ality are necessarily related to each other, this ap-
pears to be logical. However, this intermixing of safety
checks in components that are primarily functional
represents a violation of the maximum possible sepa-
ration of concerns in an ideal system architecture, in
which safety would be considered and implemented
separately from the desired functionality, allowing for
a clean separation that promotes both safety testing
and rigorous reasoning about safety properties.

As an alternative to static verification methods, run-
time verification makes possible easy standardization
of rigorous formal safety specifications and clean sep-
aration between functionality and safety components
of systems.

RUNTIME VERIFICATION

Runtime verification is a system analysis and ap-
proach that extracts information from the running sys-
tem and uses it to assess satisfaction or violation of
specified properties and constraints [16]. Properties
are expressed formally, as finite state machines, reg-
ular expressions, linear temporal logic formulas, etc.
These formal requirements are used to synthesize
monitors, and the existing code base is automatically
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Figure 2: RV-ECU system, applying automatic certifying compilation of safety specifications

33]. Runtime verification has also been applied to mo-
bile applications to provide fine-grained permissions
controls and enforce device security policies [34].

RV-ECU: A VEHICLE SAFETY ARCHITECTURE

Because the automotive industry develops some of
the most widely deployed safety critical software of
any industry, it represents an ideal context where the
benefits of runtime verification can make a significant
difference.

Towards this goal we introduce RV-ECU, a develop-
ment platform, also referred to as a “workbench” or
a “system” in the paper, for checking and enforcing
the safety of automotive bus communications. For
brevity, whenever the context is non-ambiguous we
take the freedom to use the same name “RV-ECU” for
any of its components or even for other components
that make use of code produced using RV-ECU.

At its core, RV-ECU consists of a compiler from for-
mally defined safety specifications to monitoring code
running on embedded control units. The safety spec-
ifications can be designed in any known mathemati-
cal formalism, with RV-ECU providing a plugin-based
system to enable the development of custom for-
malisms for the specific automotive needs. Currently,
some supported specifications languages include fi-
nite state machines, regular expressions, linear tem-
poral logic, and context-free grammars.

To provide a clearer picture of what RV-ECU is and
what it can do, we will explain its use, from end to end
and step by step:

1. Trained personnel use the formalism of their
choice to specify a safety property. Take, for ex-
ample, the property that the windshields being on
the fastest setting implies the headlights are on
the brightest setting. The specification includes
”recovery actions” to take if the property is vio-
lated, to return to a safe state

2. The RV-ECU compiler is invoked on the formal
definition, creating monitors and proof objects
that certify the monitors are correct with regards
to the specification

3. The original code base is instrumented, either
automatically or manually, with calls to monitors
are relevant call sites. Thus, the safety check-
ing/recovery functionality is cleanly orthogonal to
other functionality considerations.

Figure 2 shows an overview of the RV-ECU method-
ology, which takes formal specifications as input and
from them automatically outputs code checking these
specifications as well as a proof object certifying the
correctness of this code over the mathematical se-
mantics of the specification formalism and of the un-
derlying programming language. Thus, the code out-
put by the RV-ECU compiler provides correctness
proof certificates of the monitoring code as well as of
the recovering code which is executed when the orig-
inal specification is violated. These certificates can
be checked in third party theorem proving software,
providing the maximum known assurance guarantees
that the code running on-device implements the given
safety specifications and their recovery handlers.

The benefits of the RV-ECU approach are numer-
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Figure 3: RV-ECU running both globally and locally,
checking and enforcing vehicle system-wide safety.

ous. RV-ECU’s compatibility with many formalisms
and its function as a compiler to monitors completely
decouples considerations of functionality from those
of safety. Automotive software engineers are free to
focus their efforts on code that enhances the func-
tionality of software systems aboard the automobile,
while safety engineers can focus on formalizing and
testing safety properties. This decoupling allows for
the development of modular and reusable safety for-
malisms that can easily be shared between automo-
tive suppliers and OEMs. This can be revolutionary,
as it ensures compatibility in safety specifications be-
tween OEMs and Tier 1 suppliers. It even makes pos-
sible a standardized database of formal safety proper-
ties maintained and updated by state regulatory bod-
ies.

GLOBAL AND LOCAL MONITORING Figure 3
shows the RV-ECU system running on a vehicle. It is
important to note that RV-ECU can be applied in two
places: the generated monitoring code can either run
on a separate control unit to monitor the global traffic
on the bus, or be integrated within an existing control
unit (e.g., the power steering ECU) to prevent it from
taking unsafe actions. We therefore distinguish two
categories of monitors, with “global” monitors observ-
ing the bus on a dedicated ECU and “local” monitors
observing the bus from the perspective of an existing
ECU responsible for some functionality.

These global and local monitors can then further com-
municate to increase their effectiveness. When used

together, the global monitors can track the state of
the entire vehicle system, with local monitors track-
ing only the state important to a particular controller.
By communicating over the CAN bus, they are able
to share messages and commands, and the global
monitor is able to instruct the local monitors to block
or modify messages they may otherwise allow.

For simple testing and safety specifications involv-
ing one component, local monitoring can be used.
With complex or resource-intensive properties involv-
ing multiple components, global monitoring can be
used. A combination of these approaches can be ap-
plied both in the testing cycle and the production auto-
mobile, spanning the extremes between global mon-
itoring of the entire system only with untrusted code
running on individual components and local monitor-
ing of specific components only with no global speci-
fications or dedicated hardware. This flexibility allows
OEMs and Tier 1 suppliers to choose how and where
they apply the runtime verification technology, allow-
ing for incremental rollouts of local monitors at first
followed by the eventual implementation of a global
monitor, or vice versa.

Figure 4 shows the ideal RV-ECU deployment, with
all ECUs on the bus containing local monitors and
a global monitor attached to the full system. In this
example, no communication can flow between un-
trusted, manually-written code implementing function-
ality (highlighted in yellow) and the vehicle bus without
approval from high-assurance, provably correct, au-
tomatically generated code implementing the safety
specifications of the vehicle.

The use of RV-ECU therefore protects the overall
safety of the system from both malfunctioning con-
trollers and malicious accesses (hackers), maintain-
ing a set of safety invariants specified rigorously
during the development of the vehicle. Moreover,
the safety monitoring code generated by RV-ECU
uses state-of-the-art techniques and algorithms de-
veloped by the runtime verification community specif-
ically aimed at minimizing runtime overhead.

CERTIFIABLE CORRECTNESS

As previously mentioned, the code generated by the
RV-ECU system from safety specifications addition-
ally carries proof certificates. Proof certificates are
mathematical objects expressed as objects in the Coq
automated theorem proving assistant [35], a proof as-
sistant that has been widely successfully applied to
detect security flaws in popular software [36], prove
mathematical theorems [37], and create and prove
the most complete currently certified C compiler [38].
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did not occur, the same is true. Our final correctness
notion somehow thus should include the notion of in-
strumentation.

Naturally, we need to draw a line somewhere to cre-
ate a trusted assurance base usable in what we seek
to prove. We believe the compiler boundary is the
ideal place for that separation in our work: we as-
sume that the compiler will not introduce any behavior
into the system inconsistent with the semantics of the
programming language it takes as input, and we as-
sume a lack of hardware faults. Increasing the assur-
ance of both areas is a separate research task with
ongoing academic research being pursued in certi-
fied compilation [39] [40] and trusted hardware sys-
tems [41] [42] [43].

Because of the need to include instrumentation in our
correctness guarantees, we must therefore naturally
consider the program being executed (which is the in-
strumentation site for the monitor). We believe the
correct definition of a correct (Monitor, Program) pair
is then that the Program, when instrumented with the
Monitor, will never reach any state violating the spec-
ified safety property. Thus, we must prove that the
safety property itself holds over the program, which is
equivalent to proving that the safety property holds in
the unmonitored program. This is exactly the proof we
created through our K Framework verification technol-
ogy, using the inputs shown in Figure 5 as well as the
C code of the same program being executed.

We are continuing to explore alternate correctness
definitions and guarantees, and are developing the
infrastructure to provide Coq-verifiable certificates for
all potential guarantees.

RV-ECU COMPARED: OTHER RV EFFORTS

There is a fair amount of supporting work in ap-
plications of runtime verification to critical systems,
embedded systems, and automotive systems. The
most similar to our work is by Kane, wherein runtime
CAN bus monitors for a range of properties are im-
plemented [44]. However, his work is not viable for
industrial use. His chosen development board, an
STFF4-Discovery microcontroller, does not include a
CAN transceiver, so he added a breadboard for CAN
read/write functionality. By contrast, RV-ECU is an
integrated hardware/software system, with the hard-
ware ECU is capable of being used in a vehicle with-
out modification, as we have shown in our demo.

Other work in runtime monitoring for ultra critical sys-
tems and hard real time monitoring also falls short in
its applicability to the automotive sector. One repre-

sentative example is the Copilot system from Galois,
Inc [45] [46]. Though it, too, is a compiler from for-
malisms to embedded C monitors, it requires a com-
pletely custom formalism to specify properties, and
moreover requires expertise in Haskell, a niche lan-
guage, and the use of the custom Copilot embed-
ded domain specific language. In contrast, RV-ECU’s
modular plugin system allows specification in arbitrary
formalisms and knowledge only of C, the language of
choice in automotive software.

Many other runtime systems for automotive monitor-
ing require specialized hardware or hardware modi-
fications to ECUs [47] [48]. In contrast, RV-ECU can
function completely in software, as the actual monitor-
ing ECU is a completely optional addition to the CAN
network. Of all systems we have seen, RV-ECU is
the most flexible, adaptable, and general system for
runtime monitoring of automobiles. It also currently
has the most rigorous infrastructure for proving mon-
itors correct, giving some additional assurance that
the code on-device behaves as intended. We intend
to continue extending these features as they become
relevant to our partners and customers.

RECALLS AND RV-ECU, A CASE STUDY

One of the key problems in the automotive industry
we believe will be helped by the RV-ECU technology
is a reduction in the required number of software re-
calls, as well as a quicker and less costly response
when recalls must be performed. To demonstrate this
application of our technology, we consider previous
software-caused recalls in the automotive industry.

We do not have to look far to find good examples. Just
a few months ago two security researchers unveiled
an exploit that gave them full, remote access to the
CAN bus of the Chrysler Jeep Cherokee [49]. The
two researchers found an unauthenticated open port
on the car’s Uconnect cellular network interface, and
used this foothold, as well as the fact that firmware bi-
naries were unsigned, to update the car’s networking
hardware over the air with a backdoored firmware that
gave them the ability to sniff CAN messages.

An unauthenticated SPI line between their back-
doored chip and a CAN controller allowed them to
write arbitrary messages over the CAN bus. Their
control over the car was near total - they demon-
strated complete wireless control over braking, the
sound system, the driver display, door locks, AC,
windshield wipers, steering (in reverse), and trans-
mission [50]. They publicized their research, after
disclosing the issue to regulators the car companies
involved, with a dramatic article in Wired magazine.
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A Wired journalist took a spin in a hacked car, which
the researchers remotely drove into a ditch [49]. This
announcement created waves both in the automotive
industry and among the general public, and continues
to inspire both continued media and public discussion,
as well as safety legislation. The hack led to a recall
of 1.4 million cars, the proposal of new vehicle cyber
safety regulation in Congress, and a $400 million drop
in Fiat Chrysler’s market cap [51].

This incident highlights the deficiencies of the au-
tomotive industry with regards to safety, and the
adverse effects of informal software engineering
methodology on both end consumers and the bot-
tom line. Fiat was lucky in that the two security re-
searchers chose to disclose this exploit. More exploits
along the same vein are sure to exist. How then can
runtime verification technology help automobile man-
ufacturers improve vehicular safety?

In this specific case, RV-ECU could have come into
play in multiple ways. The researchers mention in
their Blackhat conference paper that, to their surprise,
while the Jeep’s firmware update mechanism was de-
signed to be operated via the dashboard display, noth-
ing prevented them from sending firmware update
commands over the air, without authentication. This
entire attack approach would have been rendered in-
valid with one simple global safety property formal-
izing the requirement that firmware updates must be
driven from the dashboard display only.

This does not, however, deal with the more funda-
mental problem that CAN traffic is unauthenticated
and multicast. This means that all an attacker needs
to do to gain control over an automobile is gain access
to the CAN bus and impersonate legitimate ECUs.
Through local and global monitors, RV-ECU easily
allows the implementation of authentication and au-
thorization protocols as lightweight formalisms com-
pletely orthogonal to the functionality of the software
components. In other words, the engineers develop-
ing the code that achieves the desired functionality of
the ECU need not worry about authentication, that be-
ing added automatically by RV-ECU. This achieves a
separation of concerns that makes authentication and
authorization simpler and more portable.

Even if the researchers found a way past that, proper
formalization of vehicle safety would prevent many of
their attacks from taking place, even if they could im-
personate legitimate ECUs. We cannot assume that
the automotive industry will be able to correct all se-
curity vulnerabilities that could lead through compro-
mise through traditional testing and analysis: even in
the payments industry, where security has been a key
focus and source of spending and concern, recent

studies have concluded that the complexity of modern
software systems makes breaches virtually impossi-
ble to avoid [52]. Such a conclusion likely also ap-
plies to automotive, with increasingly connected and
complex systems implying that the elimination of all
security-sensitive software errors and user error is un-
likely if not impossible. We must thus manage the
risks entailed by a compromise, providing a trusted
hardware base that is minimal and well verified to en-
sure the integrity of the global system regardless of
any malicious actions taken by the attacker.

Even if a relevant specification were not preinstalled
with the vehicle, new safety specifications could
cause the vehicle to be updated with the specifica-
tion at a later date and protect all newly sold vehicles
from exhibiting the same problem. With no impact on
functionality assuming correct operation of the spec-
ification, the costs to test, implement, and distribute
the safety updates would be significantly less than
that of a dealership-based reflash of the entire ECU, a
change directly affecting both the safety and the func-
tionality of the component.

Beyond ensuring the enforcement of functional prop-
erties despite a security breach, RV-ECU can also
protect the system from a malfunction, helping to cur-
tail automotive recalls. Figure 6 shows an analysis of
past automotive recalls. We look only at recalls occur-
ring in the last five years and affecting more than 50k
cars, with software errors as the principal contributing
factor to the recall.

The results of our initial analysis seem quite promis-
ing: simple, English-language properties that are
portable across vehicles and manufacturers are of-
ten enough to have entirely prevented the recall as-
suming the presence of a functional runtime verifica-
tion platform. Of all the recalls we analyzed, only two
were not preventable by runtime verification: in both
cases, the error causing the recall was a mistake in
the specification of the original system rather than in
its implementation, meaning that the RV-ECU would
potentially enforce incorrect behavior and would not
improve or alter the safety of the overall system.

Unlike other implemented and practical systems, our
formalisms are quite concise. Figure 7 shows one
property featured in Figure 6, namely that the cruise
control motor cannot send messages unless the
cruise control is operated (started since last stopped).
As you can see from the property, a simple regular
expression over the cruise control messages and as-
sociated recovery action is sufficient to enforce the
relevant property in our simulation. Our CAN API pro-
vides a standard for translating CAN messages into
events, over which the regular expression above is
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Automaker Type Year # Vehicles Relevant Property Monitoring

Toyota [53] Mechanical 2010 7.5M Acceleration messages cannot
overlap braking messages on
the bus

CAN Only

Chrysler [54] Software 2015 1.4M Only messages in scope of the
target ECU should be
processed

CAN+Local*

Toyota [55] Software 2015 625K While moving, the hybrid
system can only be shut down
through the ignition switch**

CAN Only

Ford [56] Software 2014 595K The airbags must deploy within
10 milliseconds of acceleration
over a threshold on any axis

Local Only

Ford [57] Software 2015 432K The engine cannot be running
without the key in the ignition

CAN Only

Honda [58] Software 2015 92K Not preventable via RV
(specification error)

Local Only

GM [59] Software 2014 52K Not preventable via RV
(specification error)

Local Only

Jaguar [60] Software 2011 18K Cruise control motor cannot
send control messages unless
cruise control has been started
since last stopped

CAN Only

Figure 6: Selected large software recalls since 2010 along with their preventability from monitoring.
* = Authentication layer also required, ** = Physical component involved, property may not be sufficient

ere : (cruise_control_start cruise_control_message* cruise_control_stop)*

@ fail {

CAN_DO(CruiseControl, Stop, 1);

}
Figure 7: The ERE-based safety property enforcing cruise control messages only while in scope
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written. We also provide a function to send messages
on the CAN bus, with the component and payload de-
fined as enumerations. Properties can be tested on a
PC-based simulation or on-device, as long as speci-
fications for the manufacturer-specific components of
the CAN bus are provided. We have reverse engi-
neered several such components on a 2012 Honda
Odyssey.

A PRACTICAL DEMONSTRATION

The first step towards demonstrating the separation
of functionality and safety on a vehicle architecture
using RV-ECU is the creation of a real-vehicle demo
showcasing our architecture monitoring a realistic but
simplified safety property.

Consider the following body-related property of door
safety in a minivan, with electronic controllers that
open the rear sliding doors in response to messages
over the CAN bus: Unless the driver has unlocked
the rear doors from the global vehicle lock/unlock con-
trols, and the doors have not been locked since, the
motor responsible for opening the doors should not
do so. The safety monitoring code of this property as
well as its automatic generation using the technology
underlying RV-ECU have been illustrated in Figure 1.

It is not difficult to imagine a situation in which this
property could be violated. For example, with a mali-
cious attacker gaining control of only the infotainment
system, connected to the body CAN bus, the mali-
cious attacker could easily spoof a “rear door open”
message while the vehicle is moving at high speeds to
endanger the safety of any potential rear passengers.
Alternatively, even in situations where no malicious at-
tacker is present, a malfunctioning ECU connected to
the body bus anywhere in the car could create such
an unsafe situation by sending a message to the mo-
tor to engage. Finally and most likely, a passenger
seating in the rear seat may (mistakenly) push the
door open button, which subsequently sends the mo-
tor engage message. The last scenario above is ob-
viously checked by almost all cars, likely using a pro-
tocol implemented in the door ECU that sends data-
collecting messages to other ECUs and then sends
the motor engage message only if it determines it is
safe to do so. Not only is the door ECU more com-
plex than needs to be due to mixing functionality and
safety, but the overall systems is still unsafe, because
the other two scenarios can still happen. With RV-
ECU, all three scenarios above are treated the same
way, with a global monitor ECU in charge of monitor-
ing the safety property possibly among tens or hun-
dreds of other similar properties, and with any other
ECU free of developer-provided safety checking code.

Figure 8: RV-ECU development prototype connected
to the body CAN bus of a 2012 Honda Odyssey

The overall system is simpler and safer.

We have obtained a STM3210C-EVAL development
board implementing the popular STM32 embedded
architecture. We are mimicking a minimal AUTOSAR-
like API exclusively for interacting with the CAN bus,
and running our certifiable high-assurance code to
monitor and enforce the previously mentioned prop-
erty in a 2012 Honda Odyssey minivan. Our demo is
implemented and working, and we intend to demon-
strate it as part of our presentation in SAE 2016. Fig-
ure 8 shows our development embedded board run-
ning on the CAN bus of our demo vehicle, attached
through a connection in the driver’s side lock con-
trol unit. Figure 9 shows the FSM-based property
we monitor in our initial demonstration of the body
CAN, available at https://runtimeverification.com/ecu.
In English, the property states that the headlights
should be on whenever the windshield wipers are on,
and set to the user’s selected mode when the wipers
are off. While this is likely not an entirely realistic
property (as manufacturers wish to grant users the
ultimate control over headlight state), it serves as a
good demonstration for the ability of our monitoring
platform to enforce real properties on the global CAN
bus.

Despite the simplicity of this formalism, the need to
maintain regularity imposed by using an FSM render
the property quite verbose. As you can see, for a
simple one-line English property, the property moni-
tored in a vehicle is over 20 lines in length. Still, the
property is relatively simple to understand and create:
we have one state for each possible (wiper, headlight)
state pair, where the wipers and headlights can either
be on or off. In this example, when we refer to head-
lights we are referring to the standard night time low
beams of our test vehicle. We then have one transi-
tion from each state for each possible change in state
of the subcomponents. For example, if the wipersOn
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fsm :

wipersOffHeadlightsOff [

wipersOn -> wipersOnHeadlightsOff,

wipersOff -> wipersOffHeadlightsOff,

headlightsOn -> wipersOffHeadlightsOn,

headlightsOff-> wipersOffHeadlightsOff

]

wipersOffHeadlightsOn [

wipersOn -> wipersOnHeadlightsOn,

wipersOff -> wipersOffHeadlightsOn,

headlightsOn -> wipersOffHeadlightsOn,

headlightsOff-> wipersOffHeadlightsOff

]

wipersOnHeadlightsOn [

wipersOn -> wipersOnHeadlightsOn,

wipersOff -> wipersOffHeadlightsOn,

headlightsOn -> wipersOnHeadlightsOn,

headlightsOff -> wipersOnHeadlightsOff

]

wipersOnHeadlightsOff [

wipersOn -> wipersOnHeadlightsOff,

wipersOff -> wipersOffHeadlightsOff,

headlightsOn -> wipersOnHeadlightsOn,

headlightsOff -> wipersOnHeadlightsOff

]

@wipersOnHeadlightsOff {

CAN_DO(Headlight, High, 1);

}

Figure 9: The FSM-based safety property experimentally enforced on the 2012 Odyssey

event is seen in the wipersOffHeadlightsOff state, we
transition to the wipersOnHeadlightsOff state.

Lastly, we have an unsafe state
(wipersOnHeadlightsOff), and a recovery handler
(@wipersOnHeadlightsOff) which sends a message to
the CAN bus using our built-in CAN communication
API to turn the Headlight component to High one
time (CAN_DO(Headlight, High, 1);) any time the
associated state is entered.

This recovery means that the unsafe state will never
be the permanent state of the system. The transition
out of the unsafe state is driven by a response from
the monitor to the transition into the state, showing
the possibility of recovering from property violations
using only bus messages. On a real vehicle, the effect
of running this monitoring code on our prototype RV-
ECU which is connected to the CAN bus is that it is
impossible to turn the wipers on without having the
headlights turn on, regardless of the position of the
headlight controls. User control of the headlights is
also returned any time the wipers turn off, and the
monitor enters a set of states it knows to be safe (as
any states with wipers off are known to be safe).

This property can alternatively be specified in the
more concise past time linear temporal logic (PTLTL)
formalism, also supported by RV-Monitor. In this for-
malism, the formal definition of the property would be:
[](wipersOn => (headlightsOff, headlightsOn]). This
property states that it is always the case that when the
wipers are on, the headlights have not been turned off
since they have been turned on (using interval nota-
tion). While we do support this notation in RV-Monitor
and this representation showcases our ability to con-
cisely express formal specifications, we believe that

past-time linear temporal logic is beyond the immedi-
ate familiarity level with formal properties of the ma-
jority of our target with the RV-ECU product. We will
thus focus primarily on the familiar FSM and regular
expression formalisms, common in general practice.

FUTURE WORK AND APPLICATIONS

One unanswered research question regarding the
proposed RV-ECU safety architecture, shared with
other formal analysis methods in the automotive do-
main, is what is the ideal formalism suited for math-
ematically defining automotive properties. Runtime
Verification, Inc., will work with their automotive part-
ners and customers to provide an intuitive domain-
specific formal representation and associated plugin
for our system allowing safety engineers or man-
agers to comfortably specify such properties, lower-
ing the barrier to entry for our technology and facilitat-
ing its uptake in industry. Such a plugin would likely
also support the definition of real-time and temporal
safety properties to fully specify the range of possible
safety specifications associated with a safety-critical
real time system.

As part of this process, we are seeking an automotive
manufacturer or supplier willing to experiment with our
technology in their development environment, evalu-
ating the benefits of our specification language, code
generation infrastructure, and the general separation
of safety and functionality we provide to the specifica-
tion and monitoring of complex software systems.

TECHNICAL LIMITATIONS AND DRAWBACKS

There are several limitations and drawbacks raised
by the potential vehicle architecture we propose. The
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first is the additional communications on the CAN bus
required between the local and global monitors. In the
proposed architecture, traffic can be as much as dou-
bled for safety critical messages when the RV-ECU
acts as a relay point, as compared to when safety is
not checked at all. In an already overcrowded bus,
such limitations could be prohibitive to the implemen-
tation of our solution. To mitigate this, it is possible
to monitor properties primarily locally, monitoring only
properties involving multiple ECUs through the global
safety monitor. It is worth noting that existing architec-
tures also require a number of messages to be sent
specifically for checking safety, e.g., the door ECU re-
questing data from other ECUs when the door open
button is pushed; more research is needed to com-
pare the number of messages that RV-ECU requires
versus the existing architectures. In the long term,
our hope is that efforts aiming to replace the CAN
bus with faster and higher-throughput communication
standards will allow for our additional communication
without overburdening the system.

Another key technical challenge for our technology is
developing a formalism and infrastructure capable of
handling the real-time properties required by the au-
tomotive industry. Because we have no access to the
proprietary specifications currently used, we are un-
able to develop such a system. We thus wish to start
with an architecture capable of handling non-real-time
properties, extending it with real time support as is re-
quired to handle the needs of our customers.

The main risk in the adoption and development of run-
time verification in automotive however lies in the de-
velopment of accurate, rigorous specifications which
the automotive industry does not currently have in the
development process. With only a vague, often in-
formal notion of formal system safety, the majority of
OEMs and suppliers have not fully and rigorously de-
fined precisely what the safety of a vehicle system
consists of. This initial effort to formalize the notion
of safety in the vehicle may be cost prohibitive and
difficult, but remains necessary for the eventual cre-
ation of a system with strong safety guarantees and
high assurance. We believe this undertaking will have
a positive effect on the automotive industry, providing
a rigorous notion and understanding of what safety
means in the context of the vehicle system. This rig-
orous notion will help at every level of the develop-
ment cycle, facilitating testing, development of new
functionality, and regulatory certification.

One further and clear technical limitation of our ap-
proach is its inability to protect from hardware faults.
Because our approach operates at the software level,
any flaws in the CAN driver being used or the hard-
ware of any individual ECU can still cause prob-

lems undetectable and unforeseen by the specifica-
tion monitoring system. While the former can be mit-
igated by full verification of the CAN driver, a more
traditional fault detection approach is likely more suit-
able for detecting faults in the actuators, sensors, and
processing hardware involved in the vehicle system.

It is also important to note that extensive full-vehicle
testing will still be required despite the presence of
our safety architecture. The effects of our monitoring
code and the effects of the interactions of the spec-
ification monitors with the full system cannot be de-
termined without testing. We hope that with rigorous,
checkable specifications and descriptive error condi-
tions, our system will speed the testing cycle for safety
requirements by allowing rapid evaluation of the sys-
tem against its stated requirements. Despite this, rig-
orous conventional testing is still required to maintain
the safety of the full vehicle system.

Lastly, there is a risk that our specifications will
themselves introduce safety risks in the system: if
the specifications are inaccurate, unforeseen circum-
stances can create unexpected programmatic behav-
iors actually detrimental to the safety of the system.
For example, in Figure 4, a monitor could theoreti-
cally override or exclude a message by the controller
it incorrectly believes to be unsafe, which would itself
cause safety problems in the vehicle. While this is un-
doubtedly possible, our belief is that any unforeseen
behaviors in the formal specifications provided could
just as readily be present in the code itself, which
implements informal specifications. Formalizing the
specifications implicit in the current codebase rigor-
ously will not inherently introduce unforeseen behav-
iors, and we expect that such formal rigor in the test-
ing phase will actually help reveal previously uncon-
sidered safety-critical interactions. In the cases where
there are unintended interactions between the moni-
tors and the system itself, traditional testing should be
able to reveal them at least as readily as it reveals in-
consistencies between actual and expected behavior
in current systems.

CONCLUSION

Thus, we claim that separating safety and function-
ality in the modern automobile system would help
find software bugs early in development, avoid recalls,
and improve communication between original equip-
ment manufacturers and their suppliers. We propose
runtime verification as one solution allowing for this
separation, and introduce a potential architecture for
realizing such a practical separation.

We see that specifications checked at runtime can be
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both concise and formally precise, allowing for their
development by engineers and managers not trained
in formal methods while ensuring they are modular
and easily sharable. We implement such a system
with a practical demonstration of a simplified body
safety property, and lay out the roadmap for future
work enabled by the separation of safety and function-
ality. We discuss the technical limitations and draw-
backs of our approach, including resource overhead,
incomplete specifications, and an inability to deal with
low level hardware faults.

Overall, we seek to develop a commercial product us-
able by the automotive industry to add runtime verifi-
cation to vehicles, both in the testing and development
cycles and in production. We have already created a
production-ready architecture for the provably correct
monitoring of safety properties on automotive buses,
and intend to partner with interested parties towards
the application of such a system. We would like to ap-
ply such a technology to large-scale projects to ana-
lyze scaling concerns and demonstrate the feasibility
of our approach in production, improving the overall
safety of automotive systems.
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